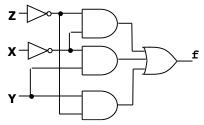
Solutions - Homework 1

(Due date: Sep. 26th (008), Sep. 27th (010) @ 11:59 pm) Presentation and clarity are very important! Show your procedure!

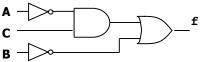
PROBLEM 1 (28 PTS)

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (15 pts) $\checkmark f = \overline{y(z + \overline{x}) + \overline{yx}} \qquad \checkmark f = \prod(M_1, M_4, M_5, M_7) \qquad \checkmark f(A, B, C) = \overline{AB\overline{C} + (\overline{C \oplus A})B}$

- $\checkmark f(X,Y,X) = \prod(M_1, M_4, M_5, M_7) = \sum(m_0, m_2, m_3, m_6) = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + \overline{X}Y\overline{Z} + XY\overline{Z} = \overline{X}\overline{Z} + \overline{X}YZ + XY\overline{Z}$ = $\overline{X}(\overline{Z} + YZ) + XY\overline{Z} = \overline{X}(\overline{Z} + Y) + XY\overline{Z} = \overline{X}\overline{Z} + \overline{X}Y + XY\overline{Z} = \overline{X}Y + \overline{Z}(\overline{X} + XY) = \overline{X}Y + \overline{Z}(\overline{X} + Y)$ = $\overline{X}Y + \overline{Z}\overline{X} + \overline{Z}Y$



 $\checkmark f(A, B, C) = \overline{AB\bar{C} + (\overline{A \oplus C})B} = \overline{AB\bar{C} + (AC + \overline{A}\overline{C})B} = \overline{AB(\overline{C} + C) + \overline{A}\overline{C}B} = \overline{AB + \overline{A}\overline{C}B} = \overline{B(A + \overline{A}\overline{C})} = \overline{B(A + \overline{A}\overline{C})} = \overline{B} + \overline{A}C$



b) Using Boolean Algebra Theorems, prove that: $y(x \oplus z) = (yx) \oplus (yz)$ (5 pts)

 $y(x \oplus z) = y(\bar{x}z + x\bar{z}) = y\bar{x}z + yx\bar{z}$ $(yx) \oplus (yz) = \overline{yx}yz + yx\overline{yz} = (\bar{y} + \bar{x})yz + yx(\bar{y} + \bar{z}) = \bar{y}yz + \bar{x}yz + yx\bar{y} + yx\bar{z} = \bar{x}yz + yx\bar{z}$

 $\therefore y(x \oplus z) = (yx) \oplus (yz)$

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

- c) For the following Truth table with two outputs: (8 pts)
 - Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums xyz f₁f₂ (POS). (4 pts)
 - Express the Boolean functions using the minterms and maxterms representations. .
 - Sketch the logic circuits as Canonical Sum of Products and Product of Sums. (3 pts)

Sum of Products

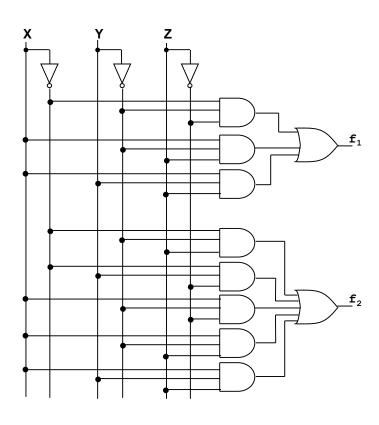
Product of Sums

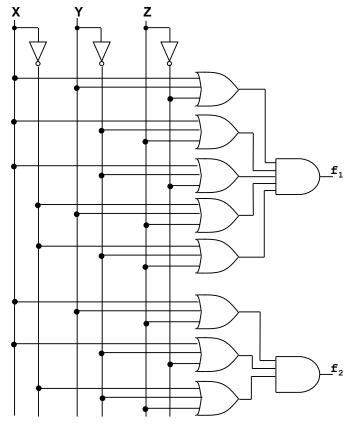
 $f_1 = (x + y + \bar{z})(x + \bar{y} + z)(x + \bar{y} + \bar{z})(\bar{x} + y + z)(\bar{x} + \bar{y} + z)$ $f_1 = \bar{x}\bar{y}\bar{z} + x\bar{y}z + xyz$

$f_2 = \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}\bar{z} + x\bar{y}z + xyz$ $f_2 = (x + y + z)(x + \bar{y} + \bar{z})(\bar{x} + \bar{y} + z)$

.....

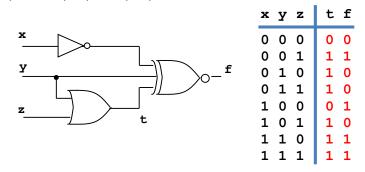
 $\begin{array}{ll} \text{Minterms and maxterms:} & f_1 = \sum (m_0, m_5, m_7) = \prod (M_1, M_2, M_3, M_4, M_6). \\ & f_2 = \sum (m_1, m_2, m_4, m_5, m_7) = \prod (M_0, M_3, M_6). \end{array}$





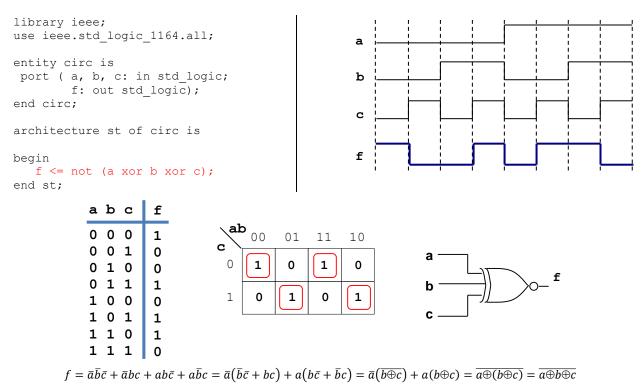
PROBLEM 2 (26 PTS)

a) Construct the truth table describing the output of the following circuit and write the simplified Boolean equation (6 pts). Note that $a \oplus b \oplus c = (a \oplus b) \oplus c = a \oplus (b \oplus c) = b \oplus (a \oplus c)$

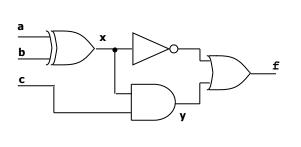


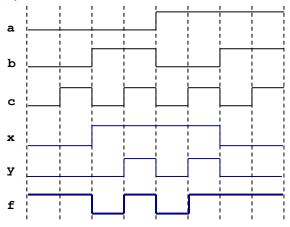
 $f = \overline{\overline{x} \oplus y \oplus (y+z)} = \overline{\overline{x} \oplus (\overline{y}z)} = \overline{x}\overline{y}z + x\overline{\overline{y}z} = \overline{x}\overline{y}z + xy + x\overline{z}$

 b) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code (using VHDL signals is optional). (8 pts)

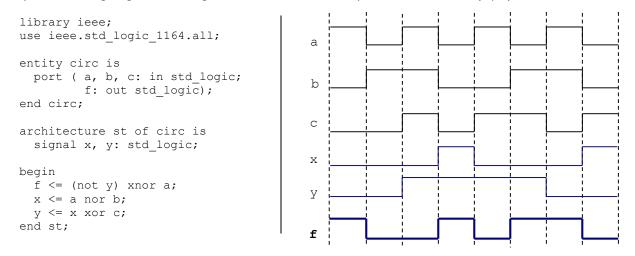


c) Complete the timing diagram of the following circuit: (5 pts)



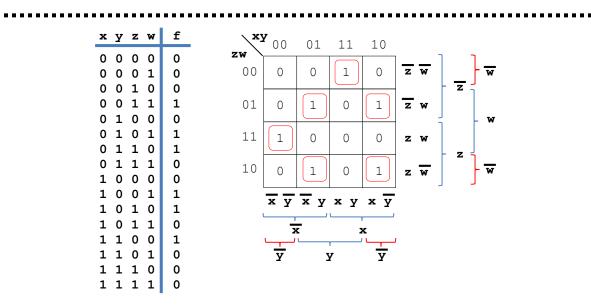


d) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (7 pts)

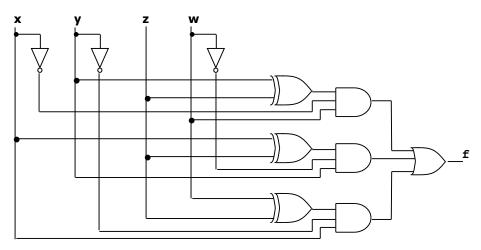


PROBLEM 3 (10 PTS)

- Complete the truth table for a circuit with 4 inputs x, y, z, w that activates an output (f = 1) when the number of 1's in the inputs is equal than the number of 0's. For example: If $xyzw = 1001 \rightarrow f = 1$. If $xyzw = 1011 \rightarrow f = 0$.
- Provide the Boolean equation for the output f using the minterms representation.
- Sketch the logic circuit.



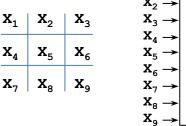
 $f = \bar{x}\bar{y}zw + \bar{x}y\bar{z}w + \bar{x}yz\bar{w} + xy\bar{z}\bar{w} + x\bar{y}\bar{z}w + x\bar{y}z\bar{w} = \bar{x}w(y\oplus z) + y\bar{w}(x\oplus z) + x\bar{y}(z\oplus w)$

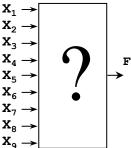


PROBLEM 4 (11 PTS)

- Tic-tac-toe game (3-by-3 grid of squares). The players alternate turns. Each player chooses a square and places a mark in a square (one player uses **x** and the other o). The first player with three marks in a row, column, or diagonal wins the game.
- Design a digital circuit for an electronic tic-tac-toe that indicates the presence of a winning pattern for player x. The circuit has 9 inputs (x₁ to x₉) and an output F.
 - ✓ Inputs x₁ to x₂: A value of `1' indicates that the player marked the corresponding position with an x. A value of `0' indicates that the other player marked that position.
 - \checkmark **F** = '1' if a winning pattern is present and **F** = '0' otherwise.
 - ✓ Example: if X₁=1, X₂=0, X₃=1, X₄=0, X₅=1, X₆=0, X₇=1, X₈=0, X₉=1, then **F**=1.
- Provide the Boolean expression for F. The 9 inputs (x₁ to x₉) are arranged in the following pattern:

Tip: Note that if there are three 1's in a winning pattern, the value of the remining 6 positions is irrelevant.





f = 1 when there are three 1's in a line. Note that there can be more than three 1's before we find three 1's in a line. So, we make f = 1 when a winning pattern is present regardless of the values of the remaining variables:

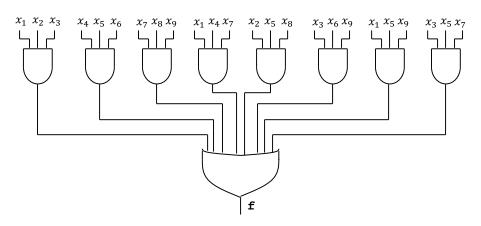
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> 9	f
1	1	1	Х	Х	Х	Х	Х	Х	1
Х	Х	Х	1	1	1	Х	Х	Х	1
Х	Х	Х	Х	Х	Х	1	1	1	1
1	Х	Х	1	Х	Х	1	Х	Х	1
Х	1	Х	Х	1	Х	Х	1	Х	1
Х	Х	1	Х	Х	1	Х	Х	1	1
1	Х	Х	Х	1	Х	Х	Х	1	1
Х	Х	1	Х	1	Х	1	Х	Х	1
All remaining cases									0

First row: $x_1x_2x_3$. (all permutations for $x_4x_5x_6x_7x_8x_9$) = $x_1x_2x_3$. $h(x_4, x_5, x_6, x_7, x_8, x_9)$ Where: $h(x_4, x_5, x_6, x_7, x_8, x_9) = \sum m(0, 1, ..., 63) = 1$ (the sum of all the minterms of a 6-variable function is always 1). Thus, Then first row is just: $x_1x_2x_3$

The same technique is applied for every row.

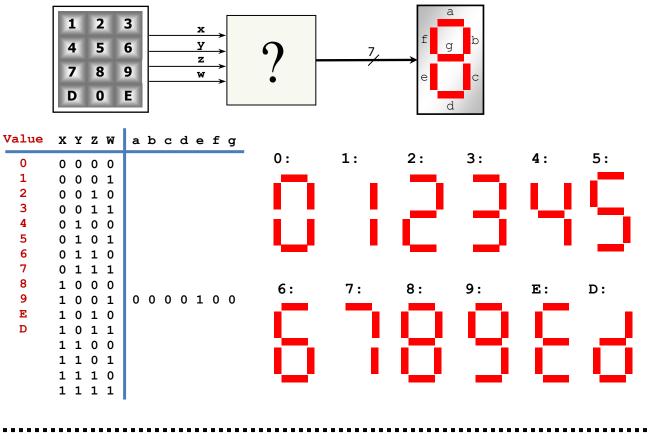
 $\rightarrow f = x_1 x_2 x_3 + x_4 x_5 x_6 + x_7 x_8 x_9 + x_1 x_4 x_7 + x_2 x_5 x_8 + x_3 x_6 x_9 + x_1 x_5 x_9 + x_3 x_5 x_7$

 $\checkmark~$ Sketch the logical circuit resulting from the Boolean equation for F.



PROBLEM 5 (25 PTS)

- A numeric keypad produces a 4-bit code as shown below. We want to design a logic circuit that converts each 4-bit code to a 7-segment code, where each segment is an LED. The LEDs are lit with a logical '0' (negative logic). The inputs are active high (or in positive logic).
- ✓ Complete the truth table for each output (a, b, c, d, e, f, g). (4 pts)
- ✓ Provide the simplified expression for each output (a, b, c, d, e, f, g). Use Karnaugh maps for a, b, c, d, e and the Quine-McCluskey algorithm for f, g. Note that it is safe to assume that the codes 1100 to 1111 will not be produced by the keypad.



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

Value	x	Y	z	W	a	b	с	d	е	f	g
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0	0	0	1	0	0	1	0
3	0	0	1	1	0	0	0	0	1	1	0
4	0	1	0	0	1	0	0	1	1	0	0
5	0	1	0	1	0	1	0	0	1	0	0
6	0	1	1	0	0	1	0	0	0	0	0
7	0	1	1	1	0	0	0	1	1	1	1
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	0	1	0	0
E	1	0	1	0	0	1	1	0	0	0	0
D	1	0	1	1	1	0	0	0	0	1	0
	1	1	0	0	х	х	х	х	х	х	х
	1	1	0	1	х	х	х	х	х	х	х
	1	1	1	0	х	х	х	х	х	х	Х
	1	1	1	1	Х	х	х	х	х	х	х

 $a = \bar{x}\bar{y}\bar{z}w + y\bar{z}\overline{w} + xzw$

- $b = y\bar{z}w + yz\bar{w} + xz\bar{w}$
- $c = \overline{y} z \overline{w}$
- $d=\bar{x}\bar{y}\bar{z}w+y\bar{z}\overline{w}+yzw$

 $e = y\bar{z} + \bar{z}w + \bar{x}w$

a x	y 00	01	11	10	p _x7	, ₀₀	01	11	10
zw \ 00	0	1	Х	0	zw \ 00	0	0	Х	0
01	1	0	Х	0	01	0	1	х	0
11	0	0	X	1	11	0	0	Х	0
10	0	0	Х	0	10	0	1	(x)	1
c xy	y 00	01	11	10	d xj	, ₀₀	01	11	10
00	0	0	Х	0	zw \	0	1	х	0
01	0	0	Х	0	01	1	0	Х	0
11	0	0	Х	0	11	0	1	х	0
10	1	0	Х	1	10	0	0	Х	0
e zw	y ₀₀	01	11	10					
00	0	1	Х	0					
01	1	1	Х	1					
11	1	1	Х	0					
10	0	0	Х	0					

• $f = \sum m(1,2,3,7,11) + \sum d(12,13,14,15)$

Number	4-literal	3-literal	2-literal	1-literal
of ones	implicants	implicants	implicants	implicants
1	m₁ = 0001 ✓	$m_{1,3} = 00-1$		
1	m₂ = 0010 ✓	$m_{2,3} = 001 -$		
		m _{3,7} = 0-11 ✓	$m_{3,7,11,15} =11$	
2	m₃ = 0011 ✓	m _{3,11} = −011 ✓	m_{3,11,7,15} =11	
2	m ₁₂ = 1100 ✓	m _{12,13} = 110- ✓	$m_{14,15,12,13} = 11$	We can't combine
		m _{12,14} = 11−0 ✓	m _{12,14,13,15} - 11	any further, so we
	m ₇ = 0111 ✓	m _{7,15} = −111 ✓		stop here
3	m ₁₁ = 1011 ✓	m _{11,15} = 1−11 ✓		
5	m ₁₃ = 1101 ✓	m _{13,15} = 11−1 ✓		
	m ₁₄ = 1110 √	m _{14,15} = 111- ✓		
4	m ₁₅ = 1111 √			

 $f = \bar{x}\bar{y}w + \bar{x}\bar{y}z + zw + xy$

Prime		Minterms						
Implicants		1	2	3	7	11		
m 1,3	$\bar{x}\bar{y}w$	x		Х				
m _{2,3}	$\bar{x}\bar{y}z$		x	Х				
m _{3,7,11,15}	ZW			Х	x	Х		
m _{14,15,12,13}	xy							

- $g = \sum m(0,1,7) + \sum d(12,13,14,15).$
- $\rightarrow f = \bar{x}\bar{y}w + \bar{x}\bar{y}z + zw$

Number	4-literal	3-literal	2-literal	1-literal
of ones	implicants	implicants	implicants	implicants
0	m₀ = 0000 ✓	$m_{0,1} = 000-$		
1	m₁ = 0001 ✓			
2	m ₁₂ = 1100 ✓	m _{12,13} = 110- ✓	$m_{12,13,14,15} = 11$	
2	m12= 1100 V	m _{12,14} = 11−0 ✓	$m_{12,14,13,15} = 11 = -$	We can't combine
	m ₇ = 0111 ✓	$m_{7,15} = -111$		any further, so we
3	m ₁₃ = 1101 ✓	m _{13,15} = 11−1 ✓		stop here
	m ₁₄ = 1110 ✓	m _{14,15} = 111- ✓		
4	m ₁₅ = 1111 √			

$g = \bar{x}\bar{y}\bar{z} + yzw + xy$

Prime	Minterms				
Implicar	0	1	7		
m _{0,1}	$\bar{x}\bar{y}\bar{z}$	x	Х		
m 7,15	yzw			x	
m _{12,13,14,15}	xy				

 $\rightarrow g = \bar{x}\bar{y}\bar{z} + yzw$